If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20t-4.905t^2=0
a = -4.905; b = 20; c = 0;
Δ = b2-4ac
Δ = 202-4·(-4.905)·0
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-20}{2*-4.905}=\frac{-40}{-9.81} =4+0.76/9.81 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+20}{2*-4.905}=\frac{0}{-9.81} =0 $
| 14+3y=13 | | 20+3y=18 | | 77-x=27-x | | 4=s+3/3 | | 4=2+v/1 | | 2=2/h | | -7=-1(4+e) | | 3.4x=44.2 | | 2x-4(x-3)=-8+5x-8 | | 2=-2+b | | 31.9=2.9b | | x/x+12=20 | | 6x^2+3=-93 | | -3=-o-2o | | 9(x+3)=-78 | | 4/6x=1 | | 7(n+1=) | | 4m+2(m+)=9m+5 | | 4/6x^2=1 | | (2+v)(5v+6)=0 | | -23=2x+5. | | t+-2=6 | | 3(5x-1)=5(3x+1) | | -3/4x-4/6x=-10 | | 2x-20=8x+6 | | 3/4x-4/6x=-10 | | -c+-9=-2 | | 12+x=6+x+4 | | -5=4u=-17 | | 5x–x=19 | | 9s+18=126 | | -2-4w=7w=8 |